《彗星来的那一夜》是部不错的科幻电影。它的假设是有无数个平行的时空,每个时空中都有自己,过着略微或者完全不同的生活。彗星来临地球的那一夜会导致无数平行的时空被联结,人们可以穿行在时空中,看到另一个时空中的自己。女主角Em是个失意的芭蕾舞演员,她发现了这个秘密之后决定来到另一个时空,取代那个更好的自己。
看完了这个电影之后,放弃漏洞颇多的假设概念不谈,我和家属首先谈了一下关于自己的无穷多个可能性。我问家属,如果你能像Em一样穿越平行时空,会不会拎着菜刀去杀了那个最好的自己?他反问,你觉得会不会有一个不是那么好的自己,拎着菜刀破时空而出,杀了你?
然后我们反思了一下各自的人生。我思考的结果是,我的人生(到目前为止的)虽然不算最好的人生,但肯定也不算最坏的人生。如果我中学的时候没好好学习,没考上大学,或者上了中专,这可能是我人生到目前为止最大的分水岭。当然还有很多其他的分水岭,很多我都没有做出现在看来最好的选择。但起码有些选择我做对了,或者说,我努力了,导致我还比较满意我现在的人生结果,并不想提着菜刀把另外一个成为大律师或者大富豪的自己杀掉。
之前我看过一个科普小短片,叫《十维空间》,是给大家解释不同维度的空间的含义的。我记得短片最后所说,十维空间是空间和时间的最顶点,它意即包含了所有的万事万物的无穷个宇宙的可能性。然后我又想,如果真的存在这些无限的平行空间,那么,比你现在更好的空间,和比你现在更坏的空间其实是相等的。
家属说,这要看你如何定义好和坏。从这一点上来说,好和坏完全是自由心证。你觉得现在的人生好,它就好;你觉得现在的人生坏,它就坏;无论你觉得有多好或者多坏,都有一个更好的或者更坏的可能性等着你。这也就说明,每个人都有后悔没有做出更好选择的时候,也都有庆幸做对了决定的时刻。你之所以成为现在的你,是无数种结果中的一种,It is what it is,是你这个时空中无数次选择的结果,也是最好的结果。
所以每个人都是最好的自己。无论你是多么后悔当时没有努力,或者失去了机会,这都是当时的你在当时各种条件(性格、知识、眼界、外界压力、各种偶然因素如当时天气)的作用下做出的选择,重来一次也很难改变,因为即使是偶然的因素,已经发生的就变成了必然。
从这一点上说,没有另外一个自己。我们一遍又一遍地描摹无穷多个可能的自己,无非是对自己过往的悔意和完美的幻梦而已。
-
Recent Posts
Recent Comments
- wangxiaoxin on 从一个华盛顿到另一个华盛顿
- 匿名 on 从一个华盛顿到另一个华盛顿
- 天天 on 异乡风味与中国胃
- GM on 我为什么要回国
- waking on 《虔诚的鳏夫》:什么时候中国导演也能这么自信就好了
Categories
Archives
- April 2020 (3)
- January 2020 (6)
- December 2019 (4)
- November 2019 (1)
- October 2019 (31)
- April 2018 (3)
- March 2018 (4)
- January 2018 (2)
- December 2017 (3)
- November 2017 (1)
- October 2017 (6)
- May 2017 (1)
- April 2017 (1)
- March 2017 (15)
- July 2016 (2)
- May 2016 (2)
- February 2016 (4)
- December 2015 (1)
- November 2015 (3)
- October 2015 (6)
- September 2015 (3)
- August 2015 (1)
- July 2015 (1)
- June 2015 (5)
- May 2015 (1)
- April 2015 (1)
- March 2015 (10)
- February 2015 (1)
- January 2015 (6)
- December 2014 (2)
- November 2014 (4)
- October 2014 (3)
- September 2014 (3)
- August 2014 (4)
- July 2014 (2)
- June 2014 (1)
- April 2014 (2)
- March 2014 (3)
- February 2014 (4)
- January 2014 (1)
- December 2013 (3)
- November 2013 (9)
- October 2013 (2)
- September 2013 (2)
- August 2013 (5)
- June 2013 (1)
- May 2013 (3)
- April 2013 (2)
- March 2013 (2)
- February 2013 (1)
- January 2013 (1)
- December 2012 (5)
- November 2012 (3)
- October 2012 (6)
- September 2012 (9)
- August 2012 (4)
- July 2012 (10)
- June 2012 (11)
- May 2012 (4)
- April 2012 (5)
- February 2012 (4)
- January 2012 (6)
- November 2011 (5)
- October 2011 (4)
- September 2011 (1)
- August 2011 (4)
- July 2011 (3)
- June 2011 (4)
- May 2011 (1)
- April 2011 (6)
- March 2011 (11)
- February 2011 (4)
- January 2011 (12)
- December 2010 (9)
- November 2010 (11)
- October 2010 (6)
- September 2010 (4)
- August 2010 (9)
- July 2010 (9)
- June 2010 (6)
- May 2010 (15)
- April 2010 (10)
- March 2010 (11)
- February 2010 (13)
- January 2010 (15)
- December 2009 (19)
- November 2009 (17)
- October 2009 (20)
- September 2009 (17)
- August 2009 (20)
- July 2009 (9)
- June 2009 (6)
- May 2009 (12)
- April 2009 (14)
- March 2009 (7)
- February 2009 (8)
- January 2009 (10)
- December 2008 (9)
- November 2008 (15)
- October 2008 (18)
- September 2008 (11)
- August 2008 (10)
- July 2008 (6)
- June 2008 (14)
- May 2008 (5)
- April 2008 (11)
- March 2008 (7)
- February 2008 (10)
- January 2008 (8)
- December 2007 (10)
- November 2007 (7)
- October 2007 (11)
- September 2007 (9)
- August 2007 (3)
- July 2007 (10)
- June 2007 (2)
- May 2007 (5)
- April 2007 (8)
- March 2007 (8)
- February 2007 (4)
- January 2007 (4)
- December 2006 (7)
- November 2006 (6)
- October 2006 (9)
- September 2006 (10)
- August 2006 (11)
- July 2006 (9)
- June 2006 (12)
- May 2006 (7)
- April 2006 (22)
- March 2006 (8)
- February 2006 (11)
- January 2006 (9)
- December 2005 (10)
- November 2005 (13)
- October 2005 (8)
- September 2005 (8)
- August 2005 (10)
- July 2005 (16)
- June 2005 (5)
- May 2005 (14)
- April 2005 (2)